Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.426
Filtrar
2.
Microcirculation ; 31(3): e12845, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265175

RESUMO

OBJECTIVE: The role of cerebral microvasculature in cognitive dysfunction can be investigated by identifying the impact of blood flow on cortical tissue oxygenation. In this paper, the impact of capillary stalls on microcirculatory characteristics such as flow and hematocrit (Ht) in the cortical angioarchitecture is studied. METHODS: Using a deterministic mathematical model to simulate blood flow in a realistic mouse cortex, hemodynamics parameters, including pressure, flow, vessel diameter-adjustable hematocrit, and transit time are calculated as a function of stalling events. RESULTS: Using a non-linear plasma skimming model, it is observed that Ht increases in the penetrating arteries from the pial vessels as a function of cortical depth. The incidence of stalling on Ht distribution along the blood network vessels shows reduction of RBCs around the tissue near occlusion sites and decreased Ht concentration downstream from the blockage points. Moreover, upstream of the occlusion, there is a noticeable increase of the Ht, leading to larger flow resistance due to higher blood viscosity. We predicted marked changes in transit time behavior due to stalls which match trends observed in mice in vivo. CONCLUSIONS: These changes to blood cell quantity and quality may be implicated in the development of Alzheimer's disease and contribute to the course of the illness.


Assuntos
Eritrócitos , Hemodinâmica , Camundongos , Animais , Microcirculação/fisiologia , Hemodinâmica/fisiologia , Hematócrito , Eritrócitos/fisiologia , Encéfalo
3.
Biophys J ; 123(7): 770-781, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38268191

RESUMO

Red blood cells (RBCs) are the simplest cell types with complex dynamical and viscoelastic phenomenology. While the mechanical rigidity and the flickering noise of RBCs have been extensively investigated, an accurate determination of the constitutive equations of the relaxational kinetics is lacking. Here we measure the force relaxation of RBCs under different types of tensional and compressive extension-jump protocols by attaching an optically trapped bead to the RBC membrane. Relaxational kinetics follows linear response from 60 pN (tensional) to -20 pN (compressive) applied forces, exhibiting a triple exponential function with three well-separated timescales over four decades (0.01-100 s). While the fast timescale (τF∼0.02(1)s) corresponds to the relaxation of the membrane, the intermediate and slow timescales (τI=4(1)s; τS=70(8)s) likely arise from the cortex dynamics and the cytosol viscosity. Relaxation is highly heterogeneous across the RBC population, yet the three relaxation times are correlated, showing dynamical scaling. Finally, we find that glucose depletion and laser illumination of RBCs lead to faster triple exponential kinetics and RBC rigidification. Viscoelastic phenotyping is a promising dynamical biomarker applicable to other cell types and active systems.


Assuntos
Viscosidade Sanguínea , Eritrócitos , Eritrócitos/fisiologia , Viscosidade , Cinética , Luz
4.
Sensors (Basel) ; 23(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067889

RESUMO

The origin of the photoplethysmography (PPG) signal is a debatable topic, despite plausible models being addressed. One concern revolves around the correlation between the mechanical waveform's pulsatile nature and the associated biomechanism. The interface between these domains requires a clear mathematical or physical model that can explain physiological behavior. Describing the correct origin of the recorded optical waveform not only benefits the development of the next generation of biosensors but also defines novel health markers. In this study, the assumption of a pulsatile nature is based on the mechanism of blood microcirculation. At this level, two interconnected phenomena occur: variation in blood flow velocity through the capillary network and red blood cell (RBC) shape deformation. The latter effect was qualitatively investigated in synthetic capillaries to assess the experimental data needed for PPG model development. Erythrocytes passed through 10 µm and 6 µm microchannel widths with imposed velocities between 50 µm/s and 2000 µm/s, according to real scenarios. As a result, the length and area deformation of RBCs followed a logarithmic law function of the achieved traveling speeds. Applying radiometric expertise on top, mechanical-optical insights are obtained regarding PPG's pulsatile nature. The mathematical equations derived from experimental data correlate microcirculation physiologic with waveform behavior at a high confidence level. The transfer function between the biomechanics and the optical signal is primarily influenced by the vasomotor state, capillary network orientation, concentration, and deformation performance of erythrocytes.


Assuntos
Eritrócitos , Fotopletismografia , Eritrócitos/fisiologia , Velocidade do Fluxo Sanguíneo , Capilares , Microcirculação
5.
Compr Physiol ; 14(1): 5325-5343, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158367

RESUMO

Red blood cell (RBC) trapping describes the accumulation of RBCs in the microvasculature of the kidney outer medulla that occurs following ischemic acute kidney injury (AKI). Despite its prominence in human kidneys following AKI, as well as evidence from experimental models demonstrating that the severity of RBC trapping is directly correlated with renal recovery, to date, RBC trapping has not been a primary focus in understanding the pathogenesis of ischemic kidney injury. New evidence from rodent models suggests that RBC trapping is responsible for much of the tubular injury occurring in the initial hours after kidney reperfusion from ischemia. This early injury appears to result from RBC cytotoxicity and closely reflects the injury profile observed in human kidneys, including sloughing of the medullary tubules and the formation of heme casts in the distal tubules. In this review, we discuss what is currently known about RBC trapping. We conclude that RBC trapping is likely avoidable. The primary causes of RBC trapping are thought to include rheologic alterations, blood coagulation, tubular cell swelling, and increased vascular permeability; however, new data indicate that a mismatch in blood flow between the cortex and medulla where medullary perfusion is maintained during cortical ischemia is also likely critical. The mechanism(s) by which RBC trapping contributes to renal functional decline require more investigation. We propose a renewed focus on the mechanisms mediating RBC trapping, and RBC trapping-associated injury is likely to provide important knowledge for improving AKI outcomes. © 2024 American Physiological Society. Compr Physiol 14:5325-5343, 2024.


Assuntos
Injúria Renal Aguda , Rim , Humanos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Isquemia , Eritrócitos/fisiologia
6.
Sci Rep ; 13(1): 18923, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919331

RESUMO

Microvascular dysfunction is the underlying pathological process in many systemic diseases. However, investigation into its pathogenesis is impeded by the accessibility and complexity of the microvasculature within different organs, particularly for the central nervous system. The retina as an extension of the cerebrum provides a glimpse into the brain through which the microvasculature can be observed. Two major questions remain unanswered: How do the microvessels regulate spatial and temporal delivery to satisfy the varying cellular demands, and how can we quantify blood perfusion in the 3D capillary network? Here, quantitative measurements of red blood cell (RBC) speed in each vessel in the field were made in the in vivo rat retinal capillary network using an ultrafast confocal technique with fluorescently labelled RBCs. Retinal RBC speed and number were found to vary remarkably between microvessels ranging from 215 to 6641 microns per second with significant variations spatially and temporally. Overall, the RBC speed was significantly faster in the microvessels in the superficial retina than in the deep retina (estimated marginal means of 2405 ± 238.2 µm/s, 1641 ± 173.0 µm/s respectively). These observations point to a highly dynamic nature of microvasculature that is specific to its immediate cellular environment and is constantly changing.


Assuntos
Microvasos , Retina , Ratos , Animais , Retina/diagnóstico por imagem , Microvasos/diagnóstico por imagem , Microvasos/fisiologia , Perfusão , Eritrócitos/fisiologia , Encéfalo/irrigação sanguínea , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/fisiologia
7.
J Vis Exp ; (200)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37902362

RESUMO

Red blood cells (RBCs) are known for their remarkable deformability. They repeatedly undergo considerable deformation when passing through the microcirculation. Reduced deformability is seen in physiologically aged RBCs. Existing techniques to measure cell deformability cannot easily be used for measuring fatigue, the gradual degradation in cell membranes caused by cyclic loads. We present a protocol to evaluate mechanical degradation in RBCs from cyclic shear stresses using amplitude shift keying (ASK) modulation-based electrodeformation in a microfluidic channel. Briefly, the interdigitated electrodes in the microfluidic channel are excited with a low voltage alternating current at radio frequencies using a signal generator. RBCs in suspension respond to the electric field and exhibit positive dielectrophoresis (DEP), which moves cells to the electrode edges. Cells are then stretched due to the electrical forces exerted on the two cell halves, resulting in uniaxial stretching, known as electrodeformation. The level of shear stress and the resultant deformation can be easily adjusted by changing the amplitude of the excitation wave. This enables quantifications of nonlinear deformability of RBCs in response to small and large deformations at high throughput. Modifying the excitation wave with the ASK strategy induces cyclic electrodeformation with programmable loading rates and frequencies. This provides a convenient way for the characterization of RBC fatigue. Our ASK-modulated electrodeformation approach enables, for the first time, a direct measurement of RBC fatigue from cyclic loads. It can be used as a tool for general biomechanical testing, for analyses of cell deformability and fatigue in other cell types and diseased conditions, and can also be combined with strategies to control the microenvironment of cells, such as oxygen tension and biological and chemical cues.


Assuntos
Deformação Eritrocítica , Eritrócitos , Eritrócitos/fisiologia , Microfluídica , Membrana Celular , Eletrodos , Estresse Mecânico
8.
Soft Matter ; 19(41): 7955-7962, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37817638

RESUMO

Optical tweezers are widely used to measure the mechanical properties of erythrocytes, which is crucial to the study of pathology and clinical diagnosis of disease. During the measurement, the blood sample is diluted and suspended in an exogenous physiological fluid, which may affect the elastic properties of the cells in vitro. Here, we investigate the effect of different diluents on the elastic properties of mouse erythrocytes by quantitatively evaluating their elastic constants using optical tweezers. The diluents are plasma extracted from mouse blood, veterinary blood diluent (V-52D), Dulbecco's modified Eagle's medium (DMEM), phosphate-buffered saline (PBS), and normal saline (NS). To create an environment that closely resembles in vivo conditions, the experiment is performed at 36.5 °C. The results show that the spring constant of mouse erythrocytes in plasma is 6.23 ± 0.41 µN m-1. The elasticity of mouse erythrocytes in V-52D and DMEM is 8.21 ± 0.91 and 6.95 ± 0.85 µN m-1, which are higher than that in plasma extracted from blood, whereas, the elasticity in PBS and NS is 4.23 ± 0.85 and 4.68 ± 0.79 µN m-1, which are less than that in plasma extracted from blood. At last, we observe the size and circularity of erythrocytes in different diluents, and consider that the erythrocyte diameter and circularity may affect cell deformability. Our results provide a reference of the diluent choice for measuring the mechanical properties of erythrocytes in vitro.


Assuntos
Deformação Eritrocítica , Pinças Ópticas , Animais , Camundongos , Eritrócitos/fisiologia , Elasticidade , Plasma
9.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834401

RESUMO

Several studies have indicated that COVID-19 can lead to alterations in blood rheology, including an increase in red blood cell aggregation. The precise mechanisms behind this phenomenon are not yet fully comprehended. The latest findings suggest that erythrocyte aggregation significantly influences microcirculation, causes the formation of blood clots in blood vessels, and even damages the endothelial glycocalyx, leading to endothelial dysfunction. The focus of this research lies in investigating the cellular factors influencing these changes in aggregation and discussing potential causes and implications in the context of COVID-19 pathophysiology. For this purpose, the aggregation of erythrocytes in a group of 52 patients with COVID-19 pneumonia was examined in a 70 kDa Dextran solution, which eliminates the influence of plasma factors. Using image analysis, the velocities and sizes of the formed aggregates were investigated, determining their porosity. This study showed that the process of erythrocyte aggregation in COVID-19 patients, independent of plasma factors, leads to the formation of more compact, denser, three-dimensional aggregates. These aggregates may be less likely to disperse under circulatory shear stress, increasing the risk of thrombotic events. This study also suggests that cellular aggregation factors can be responsible for the thrombotic disorders observed long after infection, even when plasma factors have normalized. The results and subsequent broad discussion presented in this study can contribute to a better understanding of the potential complications associated with increased erythrocyte aggregation.


Assuntos
COVID-19 , Agregação Eritrocítica , Humanos , Dextranos , Eritrócitos/fisiologia , Plasma
10.
Function (Oxf) ; 4(6): zqad046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753184

RESUMO

The wall shear stress (WSS) exerted by blood flowing through microvascular capillaries is an established driver of new blood vessel growth, or angiogenesis. Such adaptations are central to many physiological processes in both health and disease, yet three-dimensional (3D) WSS characteristics in real angiogenic microvascular networks are largely unknown. This marks a major knowledge gap because angiogenesis, naturally, is a 3D process. To advance current understanding, we model 3D red blood cells (RBCs) flowing through rat angiogenic microvascular networks using state-of-the-art simulation. The high-resolution fluid dynamics reveal 3D WSS patterns occurring at sub-endothelial cell (EC) scales that derive from distinct angiogenic morphologies, including microvascular loops and vessel tortuosity. We identify the existence of WSS hot and cold spots caused by angiogenic surface shapes and RBCs, and notably enhancement of low WSS regions by RBCs. Spatiotemporal characteristics further reveal how fluctuations follow timescales of RBC "footprints." Altogether, this work provides a new conceptual framework for understanding how shear stress might regulate EC dynamics in vivo.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Células Endoteliais , Ratos , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Microvasos/fisiologia , Eritrócitos/fisiologia
11.
JAMA ; 330(10): 976, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698573
12.
PLoS Comput Biol ; 19(7): e1011241, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37459356

RESUMO

The geometry of the blood vessel wall plays a regulatory role on the motion of red blood cells (RBCs). The overall topography of the vessel wall depends on many features, among which the endothelial lining of the endothelial surface layer (ESL) is an important one. The endothelial lining of vessel walls presents a large surface area for exchanging materials between blood and tissues. The ESL plays a critical role in regulating vascular permeability, hindering leukocyte adhesion as well as inhibiting coagulation during inflammation. Changes in the ESL structure are believed to cause vascular hyperpermeability and entrap immune cells during sepsis, which could significantly alter the vessel wall geometry and disturb interactions between RBCs and the vessel wall, including the wall-induced migration of RBCs and the thickening of a cell-free layer. To investigate the influence of the vessel wall geometry particularly changed by the ESL under various pathological conditions, such as sepsis, on the motion of RBCs, we developed two models to represent the ESL using the immersed boundary method in two dimensions. In particular, we used simulations to study how the lift force and drag force on a RBC near the vessel wall vary with different wall thickness, spatial variation, and permeability associated with changes in the vessel wall geometry. We find that the spatial variation of the wall has a significant effect on the wall-induced migration of the RBC for a high permeability, and that the wall-induced migration is significantly inhibited as the vessel diameter is increased.


Assuntos
Eritrócitos , Sepse , Humanos , Velocidade do Fluxo Sanguíneo , Eritrócitos/fisiologia , Permeabilidade Capilar
13.
Invest Ophthalmol Vis Sci ; 64(10): 15, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37450310

RESUMO

Purpose: Capillary flow plays an important role in the nourishment and maintenance of healthy neural tissue and can be observed directly and non-invasively in the living human retina. Despite their importance, patterns of normal capillary flow are not well understood due to limitations in spatial and temporal resolution of imaging data. Methods: Capillary flow characteristics were studied in the retina of three healthy young individuals using a high-resolution adaptive optics ophthalmoscope. Imaging with frame rates of 200 to 300 frames per second was sufficient to capture details of the single-file flow of red blood cells in capillaries over the course of about 3 seconds. Results: Erythrocyte velocities were measured from 72 neighboring vessels of the parafoveal capillary network for each subject. We observed strong variability among vessels within a given subject, and even within a given imaged field, across a range of capillary flow parameters including maximum and minimum velocities, pulsatility, abruptness of the systolic peak, and phase of the cardiac cycle. The observed variability was not well explained by "local" factors such as the vessel diameter, tortuosity, length, linear cell density, or hematocrit of the vessel. Within a vessel, a moderate relation between the velocities and hematocrit was noted, suggesting a redistribution of plasma between cells with changes in flow. Conclusions: These observations advance our fundamental understanding of normal capillary physiology and raise questions regarding the potential role of network-level effects in explaining the observed flow heterogeneity.


Assuntos
Capilares , Retina , Humanos , Capilares/fisiologia , Eritrócitos/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Veias , Vasos Retinianos/fisiologia
14.
Soft Matter ; 19(33): 6255-6266, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37522517

RESUMO

Bifurcations and branches in the microcirculation dramatically affect blood flow as they determine the spatiotemporal organization of red blood cells (RBCs). Such changes in vessel geometries can further influence the formation of a cell-free layer (CFL) close to the vessel walls. Biophysical cell properties, such as their deformability, which is impaired in various diseases, are often thought to impact blood flow and affect the distribution of flowing RBCs. This study investigates the flow behavior of healthy and artificially hardened RBCs in a bifurcating microfluidic T-junction. We determine the RBC distribution across the channel width at multiple positions before and after the bifurcation. Thus, we reveal distinct focusing profiles in the feeding mother channel for rigid and healthy RBCs that dramatically impact the cell organization in the successive daughter channels. Moreover, we experimentally show how the characteristic asymmetric CFLs in the daughter vessels develop along their flow direction. Complimentary numerical simulations indicate that the buildup of the CFL is faster for healthy than for rigid RBCs. Our results provide fundamental knowledge to understand the partitioning of rigid RBC as a model of cells with pathologically impaired deformability in complex in vitro networks.


Assuntos
Eritrócitos , Microfluídica , Eritrócitos/fisiologia , Microcirculação/fisiologia , Deformação Eritrocítica
15.
Allergol. immunopatol ; 51(3): 153-162, 01 mayo 2023. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-219823

RESUMO

Background: Previous studies have shown that Allium cepa (A. cepa) has relaxant and anti-inflammatory effects. In this research, A. cepa extract was examined for its prophylactic effect on lung inflammation and oxidative stress in sensitized rats. Methods: Total and differential white blood cell (WBC) count in the blood, serum levels of oxidant and antioxidant biomarkers, total protein (TP) in bronchoalveolar lavage fluid (BALF), and lung pathology were investigated in control group (C), sensitized group (S), and sensitized groups treated with A. cepa and dexamethasone. Results: Total and most differential WBC count, TP, NO2, NO3, MDA (malondialdehyde), and lung pathological scores were increased while lymphocytes, superoxide dismutase (SOD), catalase (CAT), and thiol were decreased in sensitized animals compared to controls (p < 0.01 to p < 0.001). Treatment with all concentrations of extract significantly improved total WBC, TP, NO2, NO3, interstitial fibrosis, and emphysema compared to the S group (p < 0.05 to p < 0.001). Two higher concentrations of the extract significantly decreased neutrophil and monocyte count, malondialdehyde, bleeding and epithelial damage but increased lymphocyte, CAT, and thiol compared to the S group (p < 0.05 to p < 0.001). Dexamethasone treatment also substantially improved most measured parameters (p < 0.05 to p < 0.001), but it did not change eosinophil percentage. It was proposed that A. cepa extract could affect lung inflammation and oxidative stress in sensitized rats (AU)


Assuntos
Humanos , Masculino , Ratos , Cebolas/química , Extratos Vegetais/farmacologia , Eritrócitos/fisiologia , Estresse Oxidativo , Pulmão/patologia , Modelos Animais de Doenças , Ratos Wistar , Biomarcadores
16.
Transfus Med Rev ; 37(2): 150723, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37031086

RESUMO

Blood is a complex fluid owing to its two-phase suspension of formed cellular elements within a protein-rich plasma. Vital to its role in distributing nutrients throughout the circulatory system, the mechanical properties of blood - and particularly red blood cells (RBC)-primarily determine bulk flow characteristics and microcirculatory flux. Various factors impair the physical properties of RBC, including cellular senescence, many diseases, and exposure to mechanical forces. Indeed, the latter is increasingly relevant following the advent of modern life support, such as mechanical circulatory support (MCS), which induce unique interactions between blood and artificial environments that leave blood cells with the signature of aging, albeit accelerated, and crucially underlie various serious complications, including death. Accumulating evidence indicates that these complications appear to be associated with mechanical shear forces present within MCS that are not extreme enough to overtly rupture cells, yet may still induce "sublethal" injury and "fatigue" to vital blood constituents. Impaired RBC physical properties following elevated shear exposure-a hallmark of sublethal injury to blood-are notable and may explain, at least in part, systemic complications and premature mortality associated with MCS. Design of optimal next-generation MCS devices thus requires consideration of biocompatibility and blood-device interactions to minimize potential blood complications and promote clinical success. Presented herein is a contemporary understanding of "blood damage," with emphasis on shear exposures that alter microrheological function but do not overtly destroy cells (ie, sublethal damage). Identification of key cellular factors perturbed by supraphysiological shear exposure are examined, offering potential pathways to enhance design of MCS and blood-contacting medical devices.


Assuntos
Eritrócitos , Hemólise , Humanos , Microcirculação , Estresse Mecânico , Eritrócitos/fisiologia , Envelhecimento
17.
Clin Hemorheol Microcirc ; 84(1): 33-41, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005880

RESUMO

BACKGROUND: In pretransfusion blood typing, pretreatments such as centrifugation and suspension of red blood cells (RBCs) and mixing them with sufficient amounts of reagents are required, but these steps are time-consuming and costly. OBJECTIVE: Aiming to develop a new blood typing method that requires no dilution and only a small amount of reagent, we attempted to determine blood type using syllectometry, an easy-to-use and rapid optical method for measuring the RBC aggregation that occurs when blood flow is abruptly stopped in a flow channel. METHODS: Samples of whole blood from 20 healthy participants were mixed with antibody reagents for blood typing at mixing ratios of 2.5% to 10% and measured with a syllectometry device. RESULTS: Amplitude (AMP), one of the aggregation parameters, showed significant differences between agglutination and non-agglutination samples at mixing ratios from 2.5% to 10%. Although there were significant individual differences in aggregation parameters, calculation of AMP relative to that of blood before reagent mixing reduced the individual differences and enabled determination of blood type in all participants. CONCLUSIONS: This new method enables blood typing with a small amount of reagent, without the time-consuming and labor-intensive pretreatments such as centrifugation and suspension of RBCs.


Assuntos
Tipagem e Reações Cruzadas Sanguíneas , Hemaglutinação , Humanos , Eritrócitos/fisiologia , Agregação Eritrocítica/fisiologia
18.
Biophys J ; 122(8): 1517-1525, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36926695

RESUMO

The stress-free state (SFS) of red blood cells (RBCs) is a fundamental reference configuration for the calibration of computational models, yet it remains unknown. Current experimental methods cannot measure the SFS of cells without affecting their mechanical properties, whereas computational postulates are the subject of controversial discussions. Here, we introduce data-driven estimates of the SFS shape and the visco-elastic properties of RBCs. We employ data from single-cell experiments that include measurements of the equilibrium shape of stretched cells and relaxation times of initially stretched RBCs. A hierarchical Bayesian model accounts for these experimental and data heterogeneities. We quantify, for the first time, the SFS of RBCs and use it to introduce a transferable RBC (t-RBC) model. The effectiveness of the proposed model is shown on predictions of unseen experimental conditions during the inference, including the critical stress of transitions between tumbling and tank-treading cells in shear flow. Our findings demonstrate that the proposed t-RBC model provides predictions of blood flows with unprecedented accuracy and quantified uncertainties.


Assuntos
Eritrócitos , Humanos , Teorema de Bayes , Simulação por Computador , Eritrócitos/fisiologia , Viscosidade
19.
Biophys J ; 122(9): 1646-1658, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36964658

RESUMO

Cells in living organisms are subjected to mechanical strains caused by external forces like overcrowding, resulting in strong deformations that affect cell function. We study the interplay between deformation and crowding of red blood cells (RBCs) in dispersions of nonabsorbing rod-like viruses. We identify a sequence of configurational transitions of RBC doublets, including configurations that can only be induced by long-ranged attraction: highly fluctuating T-shaped and face-to-face configurations at low, and doublets approaching a complete spherical configuration at high, rod concentrations. Complementary simulations are used to explore different energy contributions to deformation as well as the stability of RBC doublet configurations. Our advanced analysis of 3D reconstructed confocal images of RBC doublets quantifies the depletion interaction and the resulting deformation energy. Thus, we introduce a noninvasive, high-throughput platform that is generally applicable to investigate the mechanical response of biological cells to external forces and characterize their mechanical properties.


Assuntos
Deformação Eritrocítica , Eritrócitos , Eritrócitos/fisiologia
20.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835032

RESUMO

Patients with sickle cell disease (SCD) have poorly deformable red blood cells (RBC) that may impede blood flow into microcirculation. Very few studies have been able to directly visualize microcirculation in humans with SCD. Sublingual video microscopy was performed in eight healthy (HbAA genotype) and four sickle cell individuals (HbSS genotype). Their hematocrit, blood viscosity, red blood cell deformability, and aggregation were individually determined through blood sample collections. Their microcirculation morphology (vessel density and diameter) and microcirculation hemodynamics (local velocity, local viscosity, and local red blood cell deformability) were investigated. The De Backer score was higher (15.9 mm-1) in HbSS individuals compared to HbAA individuals (11.1 mm-1). RBC deformability, derived from their local hemodynamic condition, was lower in HbSS individuals compared to HbAA individuals for vessels < 20 µm. Despite the presence of more rigid RBCs in HbSS individuals, their lower hematocrit caused their viscosity to be lower in microcirculation compared to that of HbAA individuals. The shear stress for all the vessel diameters was not different between HbSS and HbAA individuals. The local velocity and shear rates tended to be higher in HbSS individuals than in HbAA individuals, notably so in the smallest vessels, which could limit RBC entrapment into microcirculation. Our study offered a novel approach to studying the pathophysiological mechanisms of SCD with new biological/physiological markers that could be useful for characterizing the disease activity.


Assuntos
Anemia Falciforme , Soalho Bucal , Humanos , Microcirculação/fisiologia , Hemodinâmica , Eritrócitos/fisiologia , Hemoglobina Falciforme , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...